Cookie Consent
Hi, this website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only after consent.
Read our Privacy Policy

Selective Sampling

Selective Sampling is a technique in machine learning where the learning algorithm selectively queries labels for specific instances from a large pool of unlabeled data, usually in a semi-supervised learning context.

The Strategy Behind Selective Sampling

This approach focuses on querying labels for instances where the model is most uncertain, effectively using limited labeling resources. It's particularly useful in scenarios where labeling data is resource-intensive.

Lakera LLM Security Playbook
Learn how to protect against the most common LLM vulnerabilities

Download this guide to delve into the most common LLM security risks and ways to mitigate them.

Related terms
untouchable mode.
Get started for free.

Lakera Guard protects your LLM applications from cybersecurity risks with a single line of code. Get started in minutes. Become stronger every day.

Join our Slack Community.

Several people are typing about AI/ML security. 
Come join us and 1000+ others in a chat that’s thoroughly SFW.