Cookie Consent
Hi, this website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only after consent.
Read our Privacy Policy

Naive Bayes Models

Naive Bayes Models are a set of supervised learning algorithms based on applying Bayes' theorem with the 'naive' assumption of conditional independence between every pair of features given the value of the class variable.

How Naive Bayes Models Work

Despite their simplicity, Naive Bayes classifiers can be highly effective and are particularly known for their effectiveness in natural language processing tasks. They are fast and relatively uncomplicated, making them a good choice for very large datasets. The models work by calculating the probability of each class and the conditional probability of each feature belonging to each class. The class with the highest probability is then selected as the output.

Lakera LLM Security Playbook
Learn how to protect against the most common LLM vulnerabilities

Download this guide to delve into the most common LLM security risks and ways to mitigate them.

Related terms
untouchable mode.
Get started for free.

Lakera Guard protects your LLM applications from cybersecurity risks with a single line of code. Get started in minutes. Become stronger every day.

Join our Slack Community.

Several people are typing about AI/ML security. 
Come join us and 1000+ others in a chat that’s thoroughly SFW.